Randall Basaraba, DVM, PhD

Professor, Department of Microbiology, Immunology & Pathology

Anatomical Pathology - Bacterial Pathogenesis - Infectious Disease - Metabolic Disease

Dr. Basaraba received his DVM degree from the College of Veterinary Medicine at Washington State University (WSU) in 1985. After a short time in a private, mixed veterinary practice in Chugiak Alaska, Dr. Basaraba returned to WSU and completed his PhD graduate degree in 1991 in the Department of Veterinary Microbiology and Pathology. Dr. Basaraba was certified by the American College of Veterinary Pathologists (ACVP) in 1992 while holding a faculty position in the College of Veterinary Medicine at Kansas State University from 1991 till 1999. In 1999 he accepted his current position in the Mycobacterial Research Laboratory and the Department of Microbiology, Immunology and Pathology in the College of Veterinary Medicine and Biomedical Sciences at Colorado State University.

Dr. Basaraba has an interest in animal models of human tuberculosis (TB) with a special interest in human and animal TB pathology, lesion pathogenesis and in vivohost-pathogen interactions. Dr. Basaraba’s recent interests include modeling Mycobacteria tuberculosis(Mtb) infection in animals with concurrent, noncommunicable diseases know to be TB risk factors in humans. In particular, Dr. Basaraba’s laboratory has developed the first model of Mtb infection in guinea pigs with diet-induced type 2 diabetes. This model is being used to better understand the basic pathogenesis of TB / type 2 diabetes comorbidity and to test both TB and diabetes drugs to better control Mtb infection in diabetics. His laboratory is also interested in using the diabetic guinea pig model to test candidate TB vaccines intended for use in humans. Dr. Basaraba’s laboratory is also studying the molecular mechanisms of in vivo drug-tolerance expressed by Mtb especially when associated with macromolecules derived from necrotic host cells. Dr. Basaraba’s laboratory has developed a novel in vitro model of Mtb drug tolerance that is currently being used to test new TB treatment strategies. These include new antimicrobial drugs and drug combinations as well as novel adjunct therapy that can be used to potentiate existing TB drugs.

John Belisle, PhD

Professor, Department of Microbiology, Immunology & Pathology

Bacterial Pathogenesis - Bacterial Physiology - Infectious Disease - Metabolomics

Dr. Belisle is Professor of Bacteriology in the Department of Microbiology, Immunology and Pathology. He received his PhD from Colorado State University in 1992, performed a Post Doctoral Fellowship at University of Texas Southwestern Medical Center and became a member of the faculty at Colorado State University in 1995. Dr. Belisle was named a Monfort Professor by Colorado State University in 2003, and was named an Honorary Scientist of the National Veterinary Research & Quarantine Service of The Republic of Korea in 2006. He has served on multiple national or international advisory boards or expert panels addressing various aspects of tuberculosis research, as well as multiple NIH Study Sections. Dr. Belisle served as the Director of the MRL from 2002 to 2009 and  as the Director of the Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research. He is currently the Director of the Infectious Disease Research & Response Network (IDR2N).

The laboratory of Dr. Belisle has focused on the characterization of the physiology of bacterial pathogens (in particular Mycobacterium tuberculosis, Mycobacterium leprae and Francisella tularensis) and how products of these bacteria interact with the hosts. These research activities have included the purification and characterization of bacterial proteins, lipids, and glycolconjugates; discovery of diagnostic and vaccine antigens; and the definition of specific molecular interactions involving the innate immune response. In performing and directing this work Dr. Belisle’s laboratory has utilized and developed numerous analytical techniques and methodologies that include mass spectrometry, liquid- and gas-chromatography, and electrophoresis. Current funded research foci in Dr. Belisle’s include: 1) the study of posttranslational modifications of mycobacterial proteins and the interaction of these and other macromolecules with the immune response against M. tuberculosis and M. leprae; 2) investigation of the involvement of protein posttranslational modifications in regulation of lipid synthesis in M. tuberculosis; and 3) applying metabolomic and lipidomics approaches to develop biosignature and biomarkers for assessing treatment response in tuberculosis patients as well as novel diagnostics.

Patrick Brennan, PhD

University Distinguished Professor, Department of Microbiology, Immunology & Pathology

Dr. Patrick Brennan was born in Boyle, County Roscommon, Ireland, in 1938 and completed his secondary education at Blackrock College, Dublin. He graduated from University College Cork (National University of Ireland) with the degrees of B.Sc. Honours (1961) and M.Sc. (1962) before arriving at Trinity College Dublin to undertake research, leading to the degree of Ph.D. (1965), on the mode of action of the anti-tuberculosis drug, Isoniazid. His research work was supervised by Professor Frank G. A. Winder and the work was carried out in the Medical Research Council Laboratories (long since demolished and replaced by the O’Reilly Institute) which already had a high reputation for research in the areas of tuberculosis, leprosy and cancer. This was followed by a two year postdoctoral fellowship at the University of California (Berkeley) studying the structures and biosynthesis of the phosphatidylinositol mannosides of Mycobacterium tuberculosis (the infectious organism causing tuberculosis). He returned to TCD as a Research Lecturer in November 1967 and the following year was married to Dr. Carol Blair who was a postdoctoral fellow in Biochemistry and subsequently Lecturer in Microbiology (1970-’75).

Patrick served as a College Lecturer at UCD (1971-’76) but then left Ireland for the USA to join his wife Carol who had been appointed an Assistant Professor at Colorado State University. He held senior posts in the National Jewish Centre for Immunology and Respiratory Medicine and the University of Colorado School of Medicine in Denver before being appointed Associate Professor, Professor and ultimately University Distinguished Professor at Colorado State University (Fort Collins). He founded a major research centre to study Mycobacteria and has published more than 300 peer reviewed papers on Tuberculosis and Leprosy. The outstanding quality of his research, together with his personal dedication to the elimination of leprosy and tuberculosis, is recognized throughout the world: He has served as Chairman of the World Health Organisation Program for Tropical Disease Research; research advisor to the Sasakawa Memorial Health Foundation who, through the Nippon Foundation, underwrites most of the Global Leprosy Elimination Campaign; and Chairman of the U.S.-Japan Cooperative Medical Sciences Program.

Delphi Chatterjee, PhD

Professor, Department of Microbiology, Immunology & Pathology

Bacterial Pathogenesis - Bacterial Physiology - Infectious Disease - Metabolomics

Chatterjee Lab Our research focuses on the glycomics and glycobiology of mycobacterial cell wall glycans such as lipopolysaccharides, glycolipids, and neutral glycans – playing important roles in the physiology and/or pathogenicity of Mycobacterium tuberculosis/leprae or in non tuberculous mycobacteria. Highlights from some of our work include definition of the structural attributes of lipoarabinomannan, a key lipoglycan ligand involved in host pathogen interaction; the identification of a number of glycosyltransferases (the Emb proteins), involved in the biosynthesis and polymerization of lipoarabinomannan; and the recognition of the pivotal role played by these glycosyltransferases in physiology and Ethambutol resistance.

In addition, in the recent years, we have focused on understanding the unique state of Mycobacterium tuberculosis in granulomas and study the host response to granuloma formation in guinea pigs during the onset of infection. This is accomplished through highly collaborative studies within CSU (principally with the laboratories of Drs. Ordway, Orme, Crick, Basaraba, Dobos) and many others. Specifically, our laboratory utilizes high resolution magic angle spinning- nuclear magnetic resonance spectrometry (HRMAS-NMR), and solution NMR, animal models of tuberculosis, and infection with relevant clinical isolates.

A third exciting focus in our laboratory is on the development of point-of-care tuberculosis diagnosis tools that are based on innovative technologies such as selection of specific aptamers to secreted M. tuberculosisantigens (in collaboration with Drs. Dan Feldheim in CU) and Surface Enhanced Raman Spectroscopy (SERS) with Marc Porter in the NanoInstitute (Univ of Utah).

NMR Based Metabolics

Dean Crick, PhD

Professor, Department of Microbiology, Immunology & Pathology
Director, Mycobacteria Research Laboratories

Bacterial Pathogenesis - Bacterial Physiology - Drug Development and Testing

Dr. Dean C. Crick received his B.Sc. and M.Sc. degrees from the University of British Columbia, and his Ph.D. (Biochemistry) from the University of Western Ontario, Canada. He conducted his post-doctoral studies at the University of Kentucky under the supervision of Dr. C. J. Waechter. In 1998 he joined the faculty of the Department of Microbiology, Immunology and Pathology, at Colorado State University.

Dr. Crick has serves on CSU’s Radiation Safety Committee, the Infectious Disease Research Center Advisory Committee, Graduate Education Committee and The National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases Advisory Committee. In addition, he serves on the editorial boards of the Journal of Biological Chemistry and the Journal of Bacteriology.

The Crick laboratory currently has projects entitled: “HTS assays for the methylerythritol-4-phosphate pathway”, “Menaquinone biosynthesis: A drug target in gram-positive bacteria”, “Assembly of the mycobacterial cell wall” and “Sub-cellular composition mapping of a single bacterium by extreme ultraviolet laser ablation mass spectroscopy with nanometer resolution” funded by the National Institutes of Health. In addition, the Bill and Melinda Gates Foundation has funded the group to carry out a project entitled “Metabolomic responses of mice and non-human primates infected with M. tuberculosis”.

The research interests of the laboratory include biochemical studies on the structure and biogenesis of the cell wall and lipids of Mycobacterium tuberculosis, and to a lesser extent other bacteria and the laboratory also has a growing interest in metabolomic studies of infected animals and the bacilli living in the lungs of infected animals. Specific interests involve the metabolism of isoprenoids, one of the most structurally diverse and biologically important families of compounds known in nature, particularly the enzymes involved in isoprenoid metabolism involved in the cell wall and lipid biosynthesis (such as prenyl phosphates and lipoquinones). An additional research focus is on the enzymes that transport (flip) activated prenyl phosphate-linked saccharides across bacterial membranes in pathogenic organisms. Information gained in these studies is applied to identification of potential drug targets and the development of new anti-tuberculosis agents when feasible.

Karen Dobos, PhD

Associate Professor, Department of Microbiology, Immunology & Pathology
Director, Research Integrity & Compliance Review Office (RICRO)
Associate Director, Mycobacteria Research Laboratories

Animal Models of Disease - Bacterial Pathogenesis - Bacterial Physiology -
Biosafety - Infectious Disease - Metabolomics - Proteomics

Dr. Karen M. Dobos received her PhD in 1996 at Colorado State University under the mentorship of Drs. Brennan and Belisle. She returned to CSU in 2002 to expand on her studies in descriptive, comparative studies of Mycobacterium tuberculosis and other NTMs in an effort to further vaccine and diagnostic assay development.

The Dobos laboratory is focused on descriptive, comparative studies of Mycobacterium tuberculosis strains that are relevant to the development of 2nd generation vaccines and diagnostic assays. Specifically, the laboratory utilizes mass spectrometry, animal models of tuberculosis, and collaborations with clinical research groups to define macromolecules engaged in host-parasite interactions. This is accomplished through highly collaborative studies within CSU and outside of the University.

Mercedes Gonzalez-Juarrero, PhD

Professor, Department of Microbiology, Immunology & Pathology

Dr. Mercedes Gonzalez-Juarrero interest is to study the basic nature of the cell mediated immune response to mycobacteria infections. During the last ten years we have undertaken studies to investigate the emergence of immunosuppression during pulmonary tuberculosis. We have focused mainly on how macrophages and dendritic cells in the M. tuberculosis infected lung become to express an immunosuppressive phenotype. We are able to modulate the lung immune environment by using intrapulmonary delivery of siRNA, recombinant cytokines and chemokines, antibodies and other immunomodulators. The main goal of our studies is to learn how and where we need to target the latently infected host to fully recover the antimicrobial activity of the infected cell and how we can use this information in the context of current chemotherapeutic and multidrug resistant TB infections. Our ultimate goal is to more rapidly eradicate drug tolerant and resistant bacilli using combined chemotherapeutic and immunotherapeutic approaches.

Marcela Henao Tamayo, PhD

Associate Professor, Department of Microbiology, Immunology & Pathology
Director, Flow Cytometry Facility

Animal Models of Disease - Infectious Disease - Vaccinology

Dr. Henao-Tamayo received her Medical Degree from the University of Antioquia, Colombia.  After finishing medical school, she joined a research group investigating genetic characteristics that could predispose to tuberculosis (TB). After that initial contact with basic research on a devastating global disease, she was determined to pursue a career in the field of TB. Marcela obtained a Master’s degree in Biomedical Sciences, with an emphasis on TB.  During that time in Colombia she met professors from Colorado State University and came to CSU as a visiting scientist.  She was later awarded a PhD by this institution, where she studied the cellular immune response to M. tuberculosis infection in mice and guinea pigs.

Currently she is an Assistant Professor at Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, and the Co-Director of CSU-Flow Cytometry Facility.

Dr. Henao-Tamayo is interested in the immunopathogenesis of Tuberculosis. Using animal models, she evaluates the role of different types of T cells and Myeloid Derived cells in tuberculosis and BCG vaccination (Bacille Calmette Guerin, the only approved vaccine against TB). She has tested numerous vaccine candidates evaluating the immune response they elicit in association with protection against tuberculosis disease.

In the field of tuberculosis pathogenesis, her work has recently focused on evaluating murine models that develop necrotic granulomas in response to M. tuberculosis infection. These models are more akin to human pathology, thus they are a great tool to evaluate antibiotic and vaccine efficacy, as well as to identify pathogenesis mechanisms. Based on the immunopathogenesis of the disease she is currently evaluating immunotherapeutic approaches that combined with chemotherapy could improve the treatment of tuberculosis.

During the more than 15 years working in the filed she has used Flow Cytometry as valuable tool in her studies, and in 2015 Dr. Henao-Tamayo and Dr. Allan, received an Emerging Innovations Facilities award from the Vice President of Research at CSU to create a distributed, campus-wide flow cytometry core facility.

Mary Jackson, PhD

Professor, Department of Microbiology, Immunology & Pathology

Bacterial Pathogenesis - Bacterial Physiology - Drug Development and Testing - Infectious Disease

Dr. Jackson is Professor of Bacteriology, and Director of the Mycobacteria Research Laboratories. Her laboratory investigates the critical issue of anti-mycobacterial multi-drug resistance by studying biosynthesis of the mycobacterial cell envelope. This research elucidates pathways in the biosynthesis and transport of glycolipids, fatty acids and polysaccharides that play important roles in the physiology and pathogenicity of M. tuberculosis. Dr. Jackson also studies emerging non-tuberculous mycobacterial pathogens, the strategies used by these organisms to persist in the environment and their molecular mechanisms of pathogenicity and resistance to biocides.

Michael Lyons, PhD

Associate Professor, Department of Microbiology, Immunology & Pathology

Computational Biology - Drug Development and Testing

Dr. Michael Lyons work in the area between pre-clinical and clinical drug development for the treatment of tuberculosis. My focus is the development and application of mathematical and computational tools to better translate experimental studies to dose selection for clinical trials. This work involves both conventional pharmacokinetic/pharmacodynamic modeling and simulation as well as physiolgical modeling and the use of engineering-based and approaches to design of optimized combination drug regimens.

Diane Ordway, PhD

Associate Professor, Department of Microbiology, Immunology & Pathology

Animal Models of Disease - Bacterial Pathogenesis - Drug Development and Testing - Infectious Disease - Vaccinology - Viral Pathogenesis

Dr. Diane Ordway finished her B.Sc in Microbiology at Colorado State University in 1992. Dr. Ordway received a full doctoral scholarship to attend the London School of Hygiene & Tropical Medicine receiving her Ph.D. in Infectious and Tropical diseases in 2000. Dr. Ordway is currently an Associate Professor at Colorado State University, Mycobacteria Research Laboratory, Department of Microbiology, Immunology and Pathology and teaches immunology classes for students in undergraduate and graduate programs. Dr. Ordway is a certified operator of the LSR II Flow Cytometer and Mo Flow Dako cytometion and FACS Aria III cell sorting and analysis.

Dr. Ordway has the expertise of being an immunologist with 18 years experience using and developing human and animal models of Mycobacterial infection. In addition, Dr. Ordway is one of the leading investigators evaluating whether the newly emerging MDR/XDR-TB strains of extremely high virulence are able to suppress the innate and/or acquired host response compared to other strains under a new innovative grant award. In addition, she also in apart of an NIH task order developing new nontuberculosis mycobacterial animal models. These animal models are used to test novel vaccines and drugs and provide us with information on the nature of induction of protective immunity

TB Research Innovator Award at Colorado State University – VimeoYouTube

Gregory Robertson, PhD

Assistant Professor, Department of Microbiology, Immunology & Pathology

Animal Models of Disease - Bacterial Pathogenesis - Bacterial Physiology - Drug Development and Testing - Infectious Disease - Proteomics

Dr. Gregory Robertson Ph.D., is an Assistant Professor of Microbiology, Immunology and Pathology at Colorado State University. He received his BSc (Microbiology and Clinical Laboratory Sciences) from Louisiana Tech University and his Ph.D. (Microbiology and Immunology) from LSU Health Science Center, Shreveport.  Dr. Robertson has more than 20 years of classical and clinical microbiology experience with emphasis in antibacterial discovery and mode-of-action studies for novel and existing classes of antimicrobials. This includes efforts in academia, and also with larger pharmaceutical corporations (Eli Lilly and Co) and smaller bio-pharmaceutical groups (Cumbre Pharmaceuticals). His current research is focused on Mycobacterium tuberculosis host-pathogen interactions and the development and application of novel preclinical animal models to further anti-tuberculosis drug development and evaluate drug resistance.

Brendan Podell, DVM, PhD

Assistant Professor, Department of Microbiology, Immunology & Pathology

Anatomical Pathology - Animal Models of Disease - Autoimmune Diseases - Bacterial Pathogenesis
- Drug Development and Testing - Infectious Disease - Metabolic Disease

Dr. Podell’s laboratory emphasizes research in mechanisms of disease, pathogenesis, and pathology. These areas of study are applied in the development of animal models to better understand host-pathogen interaction, identification of factors influencing host susceptibility to infection, and for the identification of new host-directed treatment approaches. Among animal models of tuberculosis, our laboratory focuses primarily on the guinea pig model, which most accurately reflects the pathology of human patients with active tuberculosis. This model is currently being studied to better understand the mechanisms by which diabetes increases the risk of developing active tuberculosis disease, a comorbidity of emerging importance, especially in countries where tuberculosis is endemic.

In conjunction with the laboratory of Dr. Randall Basaraba, we have developed the first guinea pig model of type 2 diabetes and diabetes-tuberculosis comorbidity. Our findings indicate that both metabolic and immunologic disturbances associated with diabetes may influence the susceptibility to tuberculosis, and that metabolic disease is also a feature of tuberculosis, even in the absence of diabetes. Our current research aims to better define the metabolic homeostasis and immunological mechanisms that may contribute to more severe tuberculosis disease in diabetics, in order to improve host immunity and identify adjunctive treatments for improving the response to antimicrobial therapy in the presence of comorbidities such as diabetes. Our findings from animal models are being translated to human TB patients and also applied to other diseases with autoimmune pathogenesis, including type 1 diabetes, as well as other models of diabetes-associated infection.


Richard Slayden, PhD

Professor, Department of Microbiology, Immunology & Pathology

Animal Models of Disease - Bacterial Pathogenesis - Bacterial Physiology - Computational Biology -
Drug Development and Testing - Genomics - Infectious Disease - Metabolomics - RNA Biology

Dr. Richard Slayden has expertise in all stages of academic drug development ranging from basic bacterial physiology, target discovery and validation to development of drug delivery formulations and efficacy testing in animal models. He has been involved in M. tuberculosis research since 1993 and F. tularensis, B. pseudomallei and Y. pestis research since 2005. Uniquely, his work includes a wide variety of integrative research strategies that affords for a complete investigation of rug mode of action and bacterial metabolism and response in vivo. Specifically, his research team has experience indentifying clinically relevant drug targets, assessing protein function via gene dosage [knockout & knockdown mutants, dominant negative and merodiploid strains], determining mode of action, and advanced lead compound formulation development. Importantly, these strategies were developed to manipulate essential molecular targets and to exploit them for the development of novel broad-spectrum chemotherapies with potency against priority pathogens and medically important difficult to treat bacterial pathogens.

John Spencer, PhD

Associate Professor, Department of Microbiology, Immunology & Pathology

Animal Models of Disease - Bacterial Pathogenesis - Infectious Disease - Proteomics

With the support of an NIH/NIAID subcontract (HHSN201005160005 Mod 5, “Microbiology and Infectious Diseases Biological Resource Repository MID-BRR – CSU Subcontract”), our laboratory provides reagents derived from armadillo grown M. leprae bacilli used to produce whole cells, subcellular antigen fractions, carbohydrate and glycolipid molecules (such as lipoarabinomannan and the M. leprae-specific phenolic glycolipid, PGL-I), DNA, and E. coli-derived recombinant proteins to researchers all over the world, particularly where leprosy is endemic.

The recent completion of the genome sequences ofMycobacterium tuberculosis, M. leprae and other mycobacterial species provides a unique opportunity to study genomics, proteomics, metabolomics and host-pathogen interactions of these important human pathogens. Our research is focused on the following: 1) defining B and T cell epitopes of immunologically important proteins of M. leprae and M. tuberculosis that are recognized in animal infection models and human disease; 2) define disease-state-specific antigens of tuberculoid and lepromatous leprosy patients using ELISA, Western blot and protein/peptide microarray techniques; 3) identify recombinant proteins and/or peptides that can be combined to develop a simple in vitro blood test towards the early diagnosis of leprosy; 4) determine serological, cell mediated and transcriptional biomarkers of M. leprae infection and disease progression to identify those individuals most at risk for leprosy.